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Communicated by V. Vento

Abstract. The charge exchange reaction pd → npp at 1 GeV projectile proton energy is studied in the
multiple-scattering expansion technique. This reaction is considered in a special kinematics, when the
momentum transfer from the beam proton to the fast neutron is close to zero. The differential cross-
section and a set of polarization observables are calculated. It was shown that the contribution of the
final-state interaction between two protons is very significant.

PACS. 21.45.+v Few-body systems – 13.75.-n Hadron-induced low- and intermediate-energy reactions
and scattering (energy ≤ 10 GeV) – 25.45.Kk Charge-exchange reactions

1 Introduction

During the last decades the deuteron-proton charge ex-
change reaction has been studied both from the exper-
imental and the theoretical point of view. The consider-
able interest in this reaction is connected, first of all, to the
opportunity to extract some information about the spin-
dependent part of the elementary nucleon-nucleon charge
exchange amplitudes. This idea was suggested by Pomer-
anchuk [1] already in 1951, but until now it continues to
be of interest. Later, this supposition has been developed
in [2–4]. It was shown, that in the plane-wave impulse
approximation (PWIA) the differential cross-section and
tensor analyzing power T20 in the dp charge exchange reac-
tion are actually fully determined by the spin-dependent
part of the elementary np → pn amplitudes. Analogous
result was obtained in [5], where this process has been
studied in the Bethe-Salpeter formalism.

The differential cross-section of the dp → npp reac-
tion at 3.34 GeV/c deuteron beam has been measured in
1970’s in the 1m hydrogen bubble chamber of the JINR
Synchrophasatron [6,7]. However, the obtained statistics
is not sufficient to evaluate the magnitude of the spin-
dependent part of the elementary amplitude. Nowadays
the experiment on the study of the dp charge exchange re-
action at the small momentum transfer in the GeV-region
is planned at the ANKE setup at COSY [8]. The aim
of this experiment is to provide information about spin-
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dependent np elastic-scattering amplitudes in the energy
region where phase-shift analysis data are absent.
From our point of view, under the kinematical condi-

tions proposed in this experiment, when the momentum of
the emitted neutron has the same direction and magnitude
as the beam proton (in the deuteron rest frame), and the
relative momentum of the two protons is very small, the
final-state interaction (FSI) effects play a very important
role. The contribution of the D-wave in the DWF to the
differential cross-section in this kinematics must be neg-
ligible [9]. However, for the polarization observables the
influence of the D-component can be significant.
The goal of our paper is to study the importance

of the D-wave and FSI effects under the kinematical
conditions of the planned experiment. We consider the
pd → npp reaction in the approach which has been used
by us to describe the pd breakup process at 1 GeV pro-
jectile proton energy [10]. This approach is based on
the Alt-Grassberger-Sandhas formulation of the multiple-
scattering theory for the three-nucleon system. The ma-
trix inversion method [11,12] has been applied to take ac-
count of the FSI contributions. Since the unpolarized and
polarized mode of the deuteron beam are supposed to be
employed in the experiment, we also calculate both the
differential cross-section and a set of polarization observ-
ables. It should be noted that in this paper we have not
considered the Coulomb interaction in the pp-pair. This
problem is nontrivial and requires a special investigation.
The paper is organized as follows. In sect. 2 a short de-

scription of the general theoretical formalism is given. The
special kinematics, when the momentum transfer from the
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beam proton to the neutron is close to zero, is consid-
ered in sect. 3. The results of our calculations for the
differential cross-section and polarization observables are
presented in sect. 4. The figures in this section demon-
strate the behaviour of this observables obtained in the
PWIA and PWIA+FSI with and without the D-wave in
the DWF. The significant dependence of the calculation
results on the elementary NN -amplitudes is also shown.
We conclude with sect. 5.

2 Theoretical formalism

In accordance to the three-body collision theory, let us
write the matrix element of the deuteron proton charge
exchange reaction,

p(p) + d(0)→ n(p1) + p(p2) + p(p3), (1)

in the following form [10]:

Upd→npp =
√
2〈123|[1− (2, 3)]

×[1 + t23(E − E1)g23(E − E1)]t
sym
12 |1(23)〉, (2)

where the operator g23(E−E1) is a free propagator for the
(23)-subsystem and the scattering operator t23(E − E1)
satisfies the Lippmann-Schwinger (LS) equation with the
two-body force operator V23 as driving term:

t23(E − E1) = V23 + V23g23(E − E1)t23(E − E1). (3)

Here E is the total energy of the three-nucleon system
E = E1 + E2 + E3.
Let us rewrite the matrix element (2) indicating ex-

plicitly the particle quantum numbers,

Upd→npp =
√
2〈p1m1τ1,p2m2τ2,p3m3τ3|
×[1− (2, 3)]ω23t

sym
12 |pmτ,ψ1Md00(23)〉, (4)

where ω23 = [1 + t23(E − E1)g23(E − E1)] and the spin
and isospin projections are denoted as m and τ , respec-
tively. The permutation operator for two nucleons (i, j)
was introduced here. The operator tsym

12 is the symmetrized
NN -operator, tsym

12 = [1− (1, 2)]t12. Inserting the unity

1 =

∫
dp′|p′m′τ ′〉〈p′m′τ ′|,

we get the following expression for the reaction amplitude:

J = (−1)1/2+τ ′

3

〈
1

2
τ2
1

2
τ3

∣∣∣∣Tτ2 + τ3
〉〈
1

2
τ ′2
1

2
τ ′3

∣∣∣∣Tτ2 + τ3
〉

×
〈
1

2
τ1
1

2
τ ′2

∣∣∣∣T
′MT ′

〉〈
1

2
τ
1

2
− τ ′3

∣∣∣∣T
′MT ′

〉

×
〈
1

2
m2
1

2
m3

∣∣∣∣SMS

〉〈
1

2
m′

2

1

2
m′

3

∣∣∣∣SM
′
S

〉

×
∫
dp′0

〈
p0, SMS

∣∣∣∣1 +mN
tST (E − E1)

p0
2−p′20 +i0

∣∣∣∣p
′
0, SM

′
S

〉

×〈p1m1, (p
′
0 + q/2) m

′
2|tT

′

sym(E − E′
3)

|pm, (p′0 − q/2) m′′〉
×〈m′′m′

3|ψ1Md
(p′0 − q/2)〉 − (2↔ 3), (5)

where E′
3 =

√
m2

N + (p
′
0 − q/2)2, mN is the nucleon

mass, and we have introduced the momentum transfer
q = p − p1, and relative momenta p0 =

1
2 (p2 − p3) and

p′0 =
1
2 (p

′
2−p′3). Henceforth, all summations over dummy

discrete indices are implied.
In the momentum representation the DWF ψ1Md

(k)
with spin projection Md is written as

|ψ1Md
(k)〉 =

∑

L=0,2

L∑

ML=−L

〈LML1Ms|1Md〉

×uL(k)YML

L (k̂)|1Ms〉, (6)

with the spherical harmonics Y ML

L (k̂) and the Clebsh-
Gordon coefficients in standard form. In our calculations,
we have employed the following parameterizations of the
S- and D-state wave functions:

u0(p) =

√
2

π

∑

i

Ci

α2
i + p

2
, u2(p) =

√
2

π

∑

i

Di

β2
i + p

2

(7)
as proposed in refs. [13–15] .
We assume that τ = τ2 = τ3 = 1/2 and τ1 = −1/2.

Then the isotopic coefficient can be calculated and eq. (5)
is simplified as

J = 1
2

〈
1

2
m2
1

2
m3

∣∣∣∣SMS

〉〈
1

2
m′

2

1

2
m′

3

∣∣∣∣SM
′
S

〉

×
〈
LML1MS

∣∣∣∣1Md

〉〈
1

2
m′′ 1

2
m′

3

∣∣∣∣1MS

〉

×
∫
dp′0

〈
ψ

(−)
p0SMSTMT

∣∣∣p′0SM ′
STMT

〉

×uL(|p′0 − q/2|)YML

L ( ̂p′0 − q/2)
×〈p1m1, (p

′
0 + q/2) m

′
2|t0sym(E − E′

3)

−t1sym(E − E′
3)|pm, (p′0 − q/2) m′′〉 − (2↔ 3).

(8)

The wave function of the final pp-pair,
〈
ψ

(−)
p0SMSTMT

∣∣∣p′0SM ′
STMT

〉
= δ(p0 − p′0)δMsM ′

s

+
mN

p2
0 − p′20 + i0

〈p0SMS |tST |p′0SM ′
S〉 , (9)

contains the FSI part, which can be taken in different
ways.
In this paper we use the matrix inversion method

(MIM) suggested in refs. [11,12] and applied to study the
deuteron electro-disintegration [16,17] and the deuteron
proton breakup process [10]. As in ref. [16], we consider
the truncated partial-wave expansion,
〈
ψ

(−)
p0SMSTMT

∣∣∣p′0SM ′
STMT

〉
= δMSM ′

S
δ(p0 − p′0)

+

Jmax∑

J=0

J∑

MJ=−J

Y µ
l (p̂0)〈lµSMS |JMJ 〉ψα

ll′(p
′
0)

×〈l′µ′SM ′
S |JMJ〉Y ∗µ′

l′ (p̂′0), (10)
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where Jmax is the maximum value of the total angular mo-
mentum in the pp-partial waves and α = {J, S, T} is the
set of conserved quantum numbers. The radial functions
ψα
ll′(p

′
0) are related via

ψα
ll′(p

′
0) =

∑

l′′

Oll′′ϕ
α
l′′l′(p

′
0)−

δ(p′0 − p0)

p2
0

δll′ (11)

to the partial-wave functions ϕα
l′′l′(p

′
0), which have the

asymptotics of standing waves. The coefficients Oll′′ can
be expressed in terms of the corresponding phase shifts
and mixing parameters [16].
Within the MIM, the functions ϕα

ll′(p
′
0) can be repre-

sented as

ϕα
ll′(p

′
0) =

N+1∑

j=1

Bα
ll′(j)

δ(p′0 − pj)
p2
j

, (12)

where the coefficients Bα
ll′(j) fulfill a set of linear alge-

braic equations approximately equivalent to the LS inte-
gral equation for the pp scattering problem1. Here N is
the dimension of this set, pj are the grid points associ-
ated with the Gaussian nodes over the interval [−1, 1] and
pN+1 = p0 (details can be found in ref. [18]). It should
be noted that in this way the nucleon wave function is
expressed by a series of δ-functions allowing one to reduce
a triple integral in eq. (8) to a double one. In addition,
the method offers the opportunity to consider the nucleon
wave function in the continuum directly in momentum
space which simplifies all subsequent calculations.

3 Collinear geometry

In this paper we consider the special kinematics, when
the momentum transfer q = p − p1 is close to zero. In
other words, the neutron momentum has the same value
and direction as the beam proton. In fact, the momentum
transfer is not exactly zero, q ≈ 1.8 MeV/c due to the dif-
ference between proton and neutron masses and deuteron
binding energy. But since this value is very small and has
no significant influence on the results, we shall suppose
q = 0 in the subsequent calculations.
Under such kinematical conditions one can neglect the

dependence of the high-energy nucleon-nucleon matrix
tNN (E − E′

3) in eq. (8) on the internal nucleon-nucleon
momentum in the deuteron and express it in the center-
of-mass system (c.m.s.) through three independent ampli-
tudes:

tcmNN (q = 0) = A+ (F −B)(σ1Q̂
∗)(σ2Q̂

∗) +B(σ1σ2),
(13)

where

Q̂∗ =
p∗ + p′

∗

|p∗ + p′∗| = p̂∗

with fast-proton (neutron) momentum p∗. We use some
results of the relativistic potential theory [19,20] to relate

1 We neglect here the Coulomb interaction in the pp-pair.

this NN t-matrix in the c.m.s. with that in the frame of
interest (see, also [10]):

〈m1m
′
2,pp

′
0|t|pp′0,mm′′〉 = NN ′F

×〈m1|D†(u,p)|µ1〉〈m′
2|D†(u,p′0)|µ′2〉

×〈µ1µ
′
2|tcm(p∗)|µµ′′〉〈µ|D(u,p)|m〉

×〈µ′′|D(u,p′0)|m′′〉, (14)

where D is the Wigner rotation operator in the spin space
and u is the four-velocity. In our kinematical situation,
when p = p1 À p′0, each of these operators is slightly
different from the unit operator, so that with a good ap-
proximation the tNN -matrix in the frame of interest has
the same spin structure. The product of the normalization
factors N and N ′ and the kinematical factor F is

NN ′F =
mN + Ep

4Ep
. (15)

In such a way, we have the following relation for the high-
energy NN t-matrix in the different frames of reference:

〈m1m
′
2|t(p,p′0)|mm′′〉 = mN + Ep

4Ep

×〈m1m
′
2|tcm(p∗)|mm′′〉 . (16)

To evaluate such quantities without their momen-
tum angular decomposition, we use the phenomenolog-
ical model suggested by Love and Franey in refs. [21].
In this approach the corresponding matrix elements are
expressed through the effective NN -interaction opera-
tors sandwiched between the initial and final plane-wave
states, that enables us to extend this construction to the
off-shell case. Obviously, such off-shell extrapolation does
not change the general spin structure.
Since the pp-pair belongs to the isotriplet, one can an-

ticipate that the FSI in the 1S0-state is prevalent at com-
paratively small p0 values. In such a way we get the fol-
lowing expression for amplitude of the dp charge exchange
process:

J = JPWIA + J1S0

JPWIA =
mN + Ep

4Ep
〈LML1MS |1MD〉uL(p0)Y

ML

L (p̂0)

×
{〈1
2
m′

2

1

2
m3|1MS

〉
〈m1m2|t0cm(p∗)−t1cm(p∗)|mm′

2〉

−
〈1
2
m′

2

1

2
m2|1MS

〉
〈m1m3|t0cm(p∗)−t1cm(p∗)|mm′

2〉},

J1S0
=
(−1)1−m2−m′

2

4π

mN + Ep

4Ep
δm2 −m3

×〈LML1MS |1MD〉
〈1
2
m′′ 1

2
−m′

2|1MS

〉

×
∫
dp′0p

′2
0

∫
dp̂′0uL(p

′
0)Y

ML

L (p̂′0)ψ
001
00 (p

′
0)

×〈m1m
′
2|t0cm(p∗)− t1cm(p∗)|mm′′〉 . (17)

As one can see, we have a very simple integral over the
angular variable p̂′0. As a result of this integration we get
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the following relation for J1S0
:

J1S0
=
(−1)1−m2−m′

2

√
4π

mN + Ep

4Ep
δm2−m3

×
〈
1

2
m′′ 1

2
−m′

2|1MD

〉
〈m1m

′
2|t0cm(p∗)− t1cm(p∗)|mm′′〉

×
∫
dp′0p

′2
0 ψ

001
00 (p

′
0)u0(p

′
0) . (18)

Note that the integral over the radial variable p′0 also
does not present any difficulties, since ψ001

00 (p
′
0) contains

δ-functions.

4 Results and discussions

We define the unpolarized 2→ 3 cross-section by the stan-
dard manner

σ(dp→ npp) = (2π)4
Ep

p

∫
dp1dp2dp3|J |2

× δ4(4-momentum), (19)

where |J |2 = 1/6Tr(JJ +) is the square of the process
amplitude averaged over all particles spin states. Using the
δ3-function to eliminate the p3 integration and changing
variables from p1 to q, we have

σ(dp→ npp) = (2π)4
Ep

p

∫
dqdp2|J |2δ

(
md + Ep

−
√
m2

N + (p− q)2 − E2 −
√
m2

N + (q − p2)2
)
. (20)

Taking p2, q ¿ p, this expression can be reduced to

σ(dp→ npp) = (2π)6
E2

p

2p2

∫
dq2dp2d cos θ2p

2
2|J |2 . (21)

We define the general spin observable related to the po-
larization of initial particles in terms of the Pauli 2 × 2
spin matrices σ for the proton and a set of spin operators
S for the deuteron [22] as follows:

Cαβ =
Tr(J σαSβJ )
Tr(JJ +)

, (22)

where the indices α and β refer to the proton and deuteron
polarization, respectively; σ0 and S0 corresponding to the
unpolarized particles are the unit matrices of two and
three dimensions. In such a way, eqs. (17)-(18) for the
dp charge exchange amplitude enable us to get the rela-
tion for any variable of this process taking into account
two-slow-protons final-state interaction in the 1S0-state.
So, we have the following expression for the spin-averaged
squared amplitude:

C0 ≡ Tr(JJ +) =
1

4π

(
mN + Ep

2Ep

)2 {
2(2B2 + F 2)

×(U2(p2) + w
2(p2)) + (F

2 −B2)w(p2)

×(w(p2)− 2
√
2ReU(p2))(3 cos

2 θ2 − 1)
}
, (23)

where U(p2) = u(p2) +
∫
dp′0p

′
0
2
ψ001

00 (p
′
0)u(p

′
0) is the

S-component of the DWF corrected on the FSI of the
pp-pair. As one can see, C0 is independent of the neu-
tron and proton azimuthal angles φq and φ2. To obtain
eq. (21), we have considered this fact and performed the
integration over azimuthal angles. We use a right-hand
coordinate system defined in accordance to the Madison
convention [23]. The quantization z-axis is along the beam
proton momentum p. Since the direction of p× p1 is un-
defined in the collinear geometry, we choose the y-axis
normal to the beam momentum. Then the third axis is
x = y × z.
The tensor analyzing power can be presented in the

following form:

C0,yy · C0 =
1

2

1

4π

(
mN + Ep

2Ep

)2

×
{
4(F 2−B2)(U2(p2) + w

2(p2)) + (2F
2 +B2)w(p2)

×(w(p2)− 2
√
2ReU(p2))(3 cos

2 θ2 − 1)
+9B2w(p2)(w(p2)− 2

√
2ReU(p2)) sin

2 θ2 cos 2φ2

−54(F 2 −B2)w2(p2) sin
2 θ2 cos

2 θ2 sin
2 φ2

}
. (24)

Note that only the squared nucleon-nucleon spin-flip am-
plitudes B2 and F 2 are in the expression for the tensor
analyzing power C0,yy and the differential cross-section.
However, the spin correlation due to the vector polariza-
tion of the deuteron and beam proton contains the inter-
ference terms of these amplitudes:

Cy,y · C0 = −
2

4π

(
mN + Ep

2Ep

)2

×{Re(FB∗){2U2(p2)− w2(p2)− w(p2)

×(w(p2) +
√
2ReU(p2))(1− 3 sin2 θ2 sin

2 φ2)}
+12w(p2)Im(FB

∗)ImU(p2)

×(cos2 θ2 − sin2 θ2 cos
2 φ2)}. (25)

It is interesting that there is a term proportional to the
imaginary part of U(p2). It has a non-zero value only in
the case when the FSI is taken into account. An analo-
gous result we have obtained for the vector-tensor spin
correlation:

Cy,xz · C0 = −
3

4π

(
mN +Ep

2Ep

)2

×{Im(FB∗){2U2(p2)− w2(p2)− w(p2)

×(w(p2) +
√
2ReU(p2))(1− 3 sin2 θ2 sin

2 φ2)

+18w2(p2) sin
2 θ2 cos

2 θ2 cos
2 φ2}

−3
√
2w(p2)Re(FB

∗)ImU(p2)

×(cos2 θ2 − sin2 θ2 cos
2 φ2)} . (26)

In order to evaluate these observables we consider the
kinematics, when one of the slow protons is emitted along
the beam direction as well as the neutron, i.e. θ2 = 0

◦.
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Fig. 1. The differential cross-section at q = 0 as a function of
one of the slow-proton momentum. The dashed and full lines
correspond to the PWIA and PWIA+FSI, respectively.

Fig. 2. The tensor analyzing power Cyy vs. p2. The dashed
line corresponds to PWIA; dash-dotted and full lines are
PWIA+FSI without and with D-component in the DWF, re-
spectively.

Under such conditions eqs. (23)-(26) are significantly sim-
plified:

C0 =
1

2π

(
mN + Ep

2Ep

)2

×{(2B2 + F 2)(U2(p2) + w
2(p2))

+(F 2 −B2)w(p2)(w(p2)− 2
√
2ReU(p2))} ,

C0,yy · C0 =
1

4π

(
mN + Ep

2Ep

)2

×{2(F 2 −B2)(U2(p2) + w
2(p2))

+(2F 2 +B2)w(p2)(w(p2)− 2
√
2ReU(p2))} ,

Fig. 3. The spin-correlation Cy,y due to the vector polarization
of the deuteron. The curves are the same as in fig. 2.

Fig. 4. The spin-correlation Cy,xz due to the tensor polariza-
tion of the deuteron. The curves are the same as in fig. 2.

Cy,y · C0 = −
2

4π

(
mN + Ep

2Ep

)2 {
Re(FB∗)[2U2(p2)

−2w2(p2)−
√
2ReU(p2)w(p2)]

−3
√
2Im(FB∗)ImU(p2)w(p2)

}
,

Cy,xz · C0 = −
3

4π

(
mN + Ep

2Ep

)2 {
Im(FB∗)[2U2(p2)

−2w2(p2)−
√
2ReU(p2)w(p2)]

+3
√
2Re(FB∗)ImU(p2)w(p2)

}
. (27)

The differential cross-section and three polarization
observables are presented in figs. 1-4. The Love and Franey
parametrization with a set of parameters obtained by fit-
ting of the modern phase shift data SP00 [25,26] has been
employed for the NN -amplitude. The full lines correspond
to calculations taking into account both the FSI in the
pp-pair and S- and D-waves in the deuteron. The results
obtained in the PWIA are shown by the dashed lines.
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Fig. 5. The differential cross-section at q = 0 as a function of
p2. The dashed and full lines correspond to the full calculation
with a set of NN amplitude parameters taken from [21] and a
fit of SP00 data [26].

Fig. 6. The tensor analyzing power Cyy vs. p2. The curves are
the same as in fig. 5.

The dash-dotted lines in figs. 2-4 for polarization observ-
ables are the full calculation results without D-wave in the
DWF. In fig. 1 the full and dash-dotted lines are undis-
tinguished. All calculations were carried out with Paris
NN -potential [24] and Paris DWF [13].

As one can see, the FSI contribution to the differential
cross-section (fig. 1) is significant even at very small pro-
ton momentum, while for the polarization observables the
difference between PWIA and PWIA+FSI is visible only
for p2 ≥ 10–15 MeV/c. However, with the increase of the
proton momentum up to 50 MeV/c the importance of the
FSI corrections to the PWIA also increases.

Note that the absolute value of the tensor analyzing
power C0,yy (fig. 2) in the momentum interval of interest
is near zero. In order to understand the source of that, we
disregard theD-wave in the DWF. Then, as a consequence
from eq. (27), the polarization observables are defined by
the ratio of the nucleon-nucleon charge exchange ampli-

Fig. 7. The spin-correlation Cy,y due to the vector polarization
of the deuteron. The curves are the same as in fig. 5.

Fig. 8. The spin-correlation Cy,xz due to the tensor polariza-
tion of the deuteron. The curves are the same as in fig. 5.

tudes only

C0,yy =
1

2
· F

2 −B2

2B2 + F 2
,

Cy,y = −2 ·
Re(FB∗)

2B2 + F 2
, (28)

Cy,xz = −3 ·
Im(FB∗)

2B2 + F 2
.

Thus, the nearness of the tensor analyzing power to zero
indicates that the absolute values of the spin-flip NN am-
plitudes approximately equal each other, |B| ≈ |F |.
The vector-tensor spin correlation Cy,xz (fig. 4) has

also very small value, |Cy,xz| ≈ 0.06. The magnitude of
this observable decreases down to zero for p2 ≈ 50 MeV/c,
if the FSI corrections and D-wave in the deuteron are
taken into account, while it is almost constant in the
PWIA and PWIA+FSI without D-wave. As one can see
from eqs. (27), (28) for Cy,xz, the reason of this behaviour
is connected with the small value of the imaginary part
of the nucleon-nucleon amplitudes product, Im(FB∗). In
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such a way, the great contribution to Cy,xz gives a term
proportional to Re(FB∗), which is defined by the D-wave
and the imaginary part of the generalized function U(p2).
Note that ImU(p2) 6= 0, if FSI taken into account.
The other situation is for the vector-vector spin cor-

relation Cy,y (fig. 3). The term proportional to Re(FB
∗)

gives also a considerable contribution to this observable,
but it is multiplied by the U2(p2). The magnitude of Cy,y

is close to the theoretical limit −2/3, that confirms to the
conclusion about the approximate equality of the nucleon-
nucleon amplitudes, |B| and |F |. Besides, this allows to
conclude, that the relative phase between these ampli-
tudes is close to zero. This is seen from eq. (28), where
the D-wave was neglected.
Since all the considered observables are defined by

the elementary nucleon-nucleon amplitudes mostly, it
is interesting to compare their behaviour for different
NN parametrization. In figs. 5-8 we present the same ob-
servables as in figs. 1-4 for two sets of parameters. The
full line corresponds to the parameterization based on the
modern shift analysis SP00 [25,26]. The dashed line is
obtained using a set of parameters for the NN amplitude
from [21]. As one can see, the difference for the differential
cross-section (fig. 5) is about 1.5–2 times. The absolute
value for the tensor analyzing power C0,yy (fig. 6) with
the new parametrization is about 2.5 times smaller than
that with parametrization [21]. The opposite situation is
for the vector-vector spin correlation Cy,y (fig. 7), where
the new prediction is 1.5 times lager in comparison with
the old parametrization of the NN amplitude [21]. The
predictions of these two parameterizations for the vector-
tensor spin correlation Cy,xz (fig. 8) are even opposite in
sign. Nevertheless, the qualitative behaviour of the curves
in figs. 6-8 for different sets of parameters is similar.

5 Conclusion

We have studied the deuteron-proton charge exchange
reaction at 1 GeV energy in special kinematics, q ≈ 0.
The influence of the D-wave in the deuteron and FSI
between two slow protons has been considered. It was
shown, that D-wave and FSI effects are negligible for
the polarization observables at proton momentum up to
10–15 MeV/c. As a result, in this region the polarization
observables are defined by the ratio of the nucleon-
nucleon charge exchange amplitudes only. However,
it should not be ignored that the importance of the
D-wave and, especially, FSI in polarization observables
increases at p2 ≥ 15 MeV/c. In such a way, we conclude
that the ratio of the nucleon-nucleon charge exchange
amplitudes and the phase shift between them can be
extracted from experimental data rather simply, if the
experimental conditions and technical setup possibil-
ities allow to work in this small momentum interval.

In the opposite case, this procedure is more complicated
and model dependent. It should be remembered that the
FSI contribution to the differential cross-section is very
significant in comparison with PWIA predictions even at
very small proton momentum. This fact does not enable
us to get the absolute value of the nucleon-nucleon spin
flip amplitudes without considering the FSI corrections.

We are grateful to V.V. Glagolev, M.S. Nioradze and A.
Kacharava for raising my interest in this problem. The authors
are thankful to V.P. Ladygin for fruitful discussions.
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